
Definição de Funções
Prof. Alberto Costa Neto
Programação em Python

Funções em Python

• Há 2 tipos de funções em Python.
> Funções Built-in que são providas como parte da
linguagem Python - input(), type(), float(), int() ...

> Funções que nós definimos e então as utilizamos

• Tratamos os nomes das funções built-in como “novas”
palavras reservadas, ou seja, evitamos usá-los como
nomes de variáveis

Definição de Funções

• Em Python, assim como em outras linguagens de
programação, uma função é um código fonte reusável
que recebe argumento(s) como entrada, computa algo, e
então retorna um resultado ou resultados

Construindo nossas
próprias Funções

• Nós criamos uma nova função usando a palavra chave def
seguida por parâmetros (opcionalmente) dentro de
parênteses

• O corpo da função deve ser indentado

• Isto define a função, mas não executa o corpo da função
def aviso():
 print('Sistema indisponivel')
 print('Contacte o administrador:')
 print('adm@empresa.com.br')

Chamando/Invocando
Funções

•Chamamos/Invocamos uma função ao usar o nome
da função, parênteses e argumentos em uma
expressão ou comando

•Por exemplo, para chamar a função aviso,
utilizamos:

aviso()

Definições e Usos
• Uma vez que tenhamos definido uma função,

podemos chamar (ou invocar) a função quantas vezes
quisermos

• Reuso gera lucro em vários ramos da indústria!

Passos armazenados
(reusados)

Saída:

Primeiro erro
Sistema indisponivel
Contacte o administrador
adm@empresa.com.br
Erro novamente
Sistema indisponivel
Contacte o administrador
adm@empresa.com.br

Programa:

def aviso():
 print('Sistema indisponivel')
 print('Contacte o administrador')
 print('adm@empresa.com.br')

print('Primeiro erro')
aviso()
print('Erro novamente')
aviso()

Chamamos estes pedaços de código fonte reusáveis de
“funções”

mailto:adm@empresa.com.br

Argumentos
• Um argumento é um valor que passamos para dentro de

uma função (como sua entrada) quando chamamos a
função

• Usamos argumentos para fazer com que a função execute
tipos diferentes de trabalho quando a chamamos em
situações diferentes

• Os argumentos são colocados, entre parênteses e
separados por vírgula, depois do nome da função

big = max('Hello world')

Argumento

Parâmetros
● Um parâmetro é uma variável

que usamos dentro da
definição da função

● É o mecanismo que permite
acessar os argumentos de
uma invocação específica de
uma função.

>>> def cumprimentar(ling):
... if ling == 'br':
... print('Ola')
... elif ling == 'fr':
... print('Bonjour')
... else:
... print('Hello')
...
>>> cumprimentar('en')
Hello
>>> cumprimentar('br')
Ola
>>> cumprimentar('fr')
Bonjour
>>>

Valor de Retorno
Geralmente uma função recebe argumentos, computa algo,
e retorna um valor a ser usado como o valor da função na
expressão que a chamou. A palavra chave return é usada
para isso.

def cumprimentar():
 return "Hello"

print(cumprimentar(), "Glenn")
print(cumprimentar(), "Sally")

Hello Glenn
Hello Sally

Valor de Retorno
• Uma função útil é

uma que produz um
resultado (ou valor de
retorno)

• O comando return
encerra a execução
da função e “devolve” o
resultado da função

>>> def cumprimentar(ling):
... if ling == 'br':
... return 'Ola'
... elif ling == 'fr':
... return 'Bonjour'
... else:
... return 'Hello'
...
>>> print(cumprimentar('en'),'Glenn')
Hello Glenn
>>> print(cumprimentar('br'),'Maria')
Ola Maria
>>> print(cumprimentar('fr'),'Michael')
Bonjour Michael
>>>

Funções Void

•Quando uma função
não retorna um
valor, a chamamos
de função “void”

def cumprimentar(ling):
 if ling == 'br':
 print('Ola')
 elif ling == 'fr':
 print('Bonjour')
 else:
 print('Hello')

def cumprimentar(ling):
 if ling == 'br':
 return 'Ola'
 elif ling == 'fr':
 return 'Bonjour'
 else:
 return'Hello'

Melhor assim!

Argumentos, Parâmetros e
Resultado

>>> big = max('Hello world')
>>> print(big)
w

 def max(inp):
 blah
 blah
 for x in y:
 blah
 blah
 return 'w'

'Hello world' 'w'

Argumento

Parâmetro

Resultado

Múltiplos Parâmetros / Argumentos

• Podemos definir mais de
um parâmetro na definição
da função

• Ao chamarmos a função,
simplesmente passamos
mais argumentos

• O número e a ordem dos
argumentos deve casar
com os parâmetros

def maior2(a, b):
 if a > b:
 return a
 else:
 return b

x = maior2(3, 5)
print(x)

Múltiplos Parâmetros / Argumentos
def maior2(a, b):
 if a > b:
 return a
 else:
 return b

def maior3(p1, p2, p3):
 m12 = maior2(p1,p2)
 m123 = maior2(p3,m12)
 return m123

print(maior3(3,7,5))

Usar funções é muito bom

• Organiza o código fonte em “parágrafos” - capture um
raciocínio completo e escolha um bom nome para a função

• DRY - Don’t repeat yourself – Faça apenas uma vez e reuse

• Se algo ficou muito grande e complexo, quebre em pedaços
lógicos e coloque estes pedaços em funções

• Crie uma biblioteca (library) de coisas comuns que você faz
repetidamente – talvez compartilhar com seus amigos...

