Definicao de Funcoes

Prof. Alberto Costa Neto
Programacao em Python

Funcoes em Python

* Ha 2 tipos de funcoes em Python.
> Funcoes gque sao providas como parte da
linguagem Python - input(), typel(), float(), int() ...

> Funcoes que nos e entao as utilizamos

* Tratamos 0os nomes das funcoes built-in como “novas”
palavras reservadas, ou seja, evitamos usa-los como
nomes de variaveis

Definicao de Funcoes

*Em Python, assim como em outras linguagens de
programacao, uma é um codigo fonte reusavel
que recebe argumento(s) como entrada, , €
entao retorna um resultado ou resultados

* NOS criamos uma nova usando a palavra chave def
seguida por parametros (opcionalmente) dentro de
parénteses

* O corpo da funcao deve ser indentado

* [sto define a funcao, mas ndo executa o corpo da funcao

def avisol() :
print ('Sistema i1ndisponivel')
print ('Contacte o administrador:')
(

print ('adm@empresa.com.br')

Chamando/lnvocando
Funcoes

* Chamamos/Invocamos uma funcao ao usar o nome

da funcao, parénteses e argumentos em uma
expressao ou comando

* Por exemplo, para chamar a funcao aviso,
utilizamos:

aviso ()

Definicoes e Usos

* Uma vez que tenhamos definido uma funcao,
podemos chamar (ou invocar) a funcao quantas vezes
quisermos

* Reuso gera lucro em varios ramos da industria!

Passos armazenados
(reusados)

Programa: Saida:

def aviso() :
print ('Sistema indisponivel') Primeiro erro
print('Contacte o administrador') , Sistema indisponivel

print('adm@empresa.com.br’) Contacte o administrador

adm@empresa.com.br

. Y - - v
print ('Primeiro erro') Erro novamente

aviso ()
print ('Erro novamente')

Chamamos estes pedacos de coédigo fonte reusaveis de
“funcoes”

mailto:adm@empresa.com.br

Argumentos

* Um argumento é um valor qgue passamos para dentro de

uma (como sua entrada) quando chamamos a
funcao
* Usamos argumentos para fazer com que a execute

tipos diferentes de trabalho quando a chamamos em
situacoes diferentes

* Os argumentos sao colocados, entre parénteses e
separados por virgula, depois do da funcao

big = ('"Hello world')
~ Argumento

Parametros

Um parametro € uma variavel
que usamos dentro da
definicao da funcao

E 0o mecanismo que permite
acessar os argumentos de
uma invocacao especifica de
uma funcao.

>>> def cumprimentar (ling):
if ling == 'br':
print('Ola’')
elif ling == 'fr':
print ('Bonjour')
else:
print('Hello')

>>> cumprimentar('en')
Hello

>>> cumprimentar ('br')
Ola

>>> cumprimentar('fr')
Bonjour

>>>

Valor de Retorno

Geralmente uma funcao recebe argumentos, computa algo,
e retorna um valor a ser usado como o valor da funcao na
expressao gue a chamou. A palavra chave return é usada
para ISsso.

def cumprimentar|():
return "Hello"

print (cumprimentar (), "Glenn") Hello Glenn
print (cumprimentar (), "Sally") Hello Sally

Valor de Retorno

* Uma fUﬂC_;éO util é >>> def cumprimentar (ling):
: if ling == 'br':
uma que produz um return 'Ola’
resultado (ou valor de elif ling == 'fr':
retorno) . return 'Bonjour'
else:

return 'Hello'

* O comando return

€NCEira a execuc;éo >>> print (cumprimentar('en'), 'Glenn')
da funcao e “devolve” 0 Hello Glenn
resultado da fUﬂ(;éO >>> print (cumprimentar ('br'), 'Maria')

Ola Maria

>>> print (cumprimentar('fr') , '"Michael')
Bonjour Michael

>>>

Funcoes Void

® Quando uma funcao
nao retorna um
valor, a chamamos
de funcao “void”

def cumprimentar (ling): def cumprimentar(ling):
if ling == 'br': 1f ling == 'br':
print('Ola’) Melhor assim! return 'Ola’

elif ling == 'fr': -~\--~ilif ling == 'fr':
print ('Bonjour') > return 'Bonjour'
else: else:

print ('Hello') return'Hello'

Argumentos, Parametros e

>>> big = max('Hello world') A
>>> print(big) / Parametro
W
I
def max (inp) :
blah
' I blah ')]
Hello world' =—> for x in y: > W
/7 blah A
blah l
Argumento return 'w' Resultado

Multiplos Parametros / Argumentos

* Podemos definir mais de
um parametro na definicao
da funcao

* Ao chamarmos a funcao,
simplesmente passamos
mais argumentos

* O numero e a ordem dos
argumentos deve casar
com 0S parametros

def maior2(a, b):
1f a > b:
return a
else:
return b

X = maior2 (3, 5)
print (x)

Multiplos Parametros / Argumentos

def maior2(a, b):
1f a > b:
return a
else:
return b

def maior3(pl, p2, p3):
ml2 = maior2(pl,p2)
ml23 = maior2 (p3,ml2)
return ml23

print(maior3(3,7,5))

Usar funcoes € muito bom

* Organiza o codigo fonte em “paragrafos” - capture um
raciocinio completo e escolha um bom nome para a funcao

. - Faga apenas uma vez e reuse

* Se algo ficou muito grande e complexo, quebre em pedacos
l6gicos e cologue estes pedacos em funcoes

* Crie uma biblioteca (library) de coisas comuns que voceé faz
repetidamente - talvez compartilhar com seus amigos...

