Prof. Alberto Costa Neto
Programacao em Python

Uma Lista e um tipo de
Colecao

 Uma colecao permite colocar varios valores em um unica “variavel’

« Colecoes sao praticas porque permitem carregar muitos valores
empacotados de forma conveniente pelo programa

amigos = ['Jose', 'Maria', 'Pedro’']
bagagem = ['meia', 'camisa',6 'perfume' |]

r

O que e uma “Colecao™?

A maioria de nossas variaveis tem um valor apenas — quando um
novo valor é colocado nela, o antigo € sobrescrito

S python
>>> x = 2
>>> x = 4

>>> print (x)
4

Constantes List

» Listas sao circundadas por >>> print([1, 24, 76])
colchetes e seus elementos sao [1, 24, 76]
>>> print(['red', 'yellow', 'blue'l])

separados entre si por virgula ['red', 'yellow', 'blue']

>>> print(['red', 24, 98.6])

* Um elemento de uma lista pode ['red', 24, 98.6]
ser qualquer objeto de Python — >>> print([1, [5, 61, 71)
até mesmo outra lista [1, [5, 6], 7]

>>> print([])

 Uma lista pode estar vazia L]

Um Laco Definido Simples

for 1 in [5, 4, 3, 2, 1] :
print (1)
print ('Fim! ')

T = DN W B~ O

Im!

Um Laco Definido com Strings

1 Fe
amigos = ['Jose', 'Maria', 'Pedro'] 7 Fe
for amigo in amigos : /7 Fe
print('Feliz Ano Novo:', amigo) /
print('Fim! ")

1z A
1z A
1z A

> Fim!

no Novo: Jose
no Novo: Maria

no Novo: Pedro

Detalhes internos das Listas

Da mesma forma que as strings, nos podemos acessar
qualgquer elemento na lista usando seu indice entre colchetes

Jose | Maria | Pedro >>> amigos = ['Jose', 'Maria', 'Pedro’]

>>> print (amigos[1l])

O 1 2 Maria

Listas sao Mutaveis

« Strings sao ‘“imutaveis” - nao

podemos mudar o conteudo de
uma string, mas podemos criar
uma nova string com as
mudancas desejadas

Listas sao “mutaveis’ - podemos
modificar qualquer elemento de
uma lista. Para isso basta utilizar
seu indice para indicar a posicao
e atribuir um novo valor

>>> fruta = 'Banana'

>>> fruta[0] = 'b'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not

support item assignment

>>> £ = fruta.lower ()

>>> print (f)

banana

>>> idades = [2, 14, 26, 41, 63]

>>> print (idades[2], idades)

26 [2, 14, 26, 41, 63]

>>> i1dades[2] = idades[2] + 2

>>> print (idades)

[2, 14, 28, 41, 63]

QIVEIN-Xo

* A funcao pode receber uma
lista como parametro e retorna o
numero de elementos na lista.

* Na verdade informa o numero
de elementos de qualquer conjunto

OuU sequéncia (ja vimos que
funciona para string...)

da Lista?

>>> msg = 'Ola Bob'
>>> print ((msg))
7

>>> x = [1, 2, 'jose', 99]
>>> print ((x))

4

>>>

Usando a funcao range

* A funcao range retorna uma >>> print (range (4))

lista de numeros que variam [0, 1, 2, 3]
de zero até o antecessor do >>> amigos = ['Jose','Maria’,'Pedro’]
>>> print(len (amigos))
3
_ _ . _ >>> print (range (len (amigos)))
 Assim fica facil construir um [0, 1, 2]

laco for e dispor de indices >>>

Lacos para todos os gostos...

amigos = ['Jose', 'Maria', 'Pedro']
-e
for amigo in amigos : =
print ('Feliz Ano Novo:', amigo) - o
1 -
for 1 in range(len(amigos)) 2 -
print(i+l, '- Feliz Ano Novo:', amigos[i])

1z Ano Novo: Jose
1z Ano Novo: Maria
Iz Ano Novo: Pedro

-eliz Ano Novo: Jose
~eliz Ano Novo: Maria
eliz Ano Novo: Pedro

Concatenando listas usando +

>>> a = [1, 2, 3]
* Podemos criar uma nova lista a >>> b = [4, 5, 6]
partir da juncao dos elementos >>> c =a + b
de 2 listas existentes >>> print(c)

[1I 2/ 3/ 4/ 5/ 6]
>>> print (a)
[1, 2, 3]

Ha um certo valor na Lista?

+ Python prové dois operadores ~ >>> nums = [1, 9, 21, 10, 16]
(in e not in) que permitem >>> 9 in nums

H X nt m True
_c ecar, r’espec: Ivamente, s_e u >>> 15 in nums
item esta ou nao em uma lista False
3 . >>> 20 not in nums
* Eles sao operadores logicos True

(retornam lrue ou False enao >>>
modificam a lista)

uma lista do inicio

* Podemos criar uma lista
vazia e entao adicionar os
elementos usando o méetodo

* A lista permanece na ordem
de insercao. Novos
elementos sao
no final da lista

>>> lista = ()

>>> lista ('livro')
>>> lista (99)

>>> print(lista)
['livro', 99]
>>> lista

>>> print(lista)
['livro', 99, 'biscoito']

('biscoito’)

>>> t = [9,
>>> t[1:3]

[41,

12]

>>> t[:4]

[9,

41,

12,

>>> t[3:]

[3,

>>> t[:]

[9,

74,

41,

15]

12,

41,

3]

3,

Listas podem ser
particionadas (sliced) usando :

12, 3,

74,

15]

74,

15]

Lembrete: Da mesma forma
que em strings, o segundo
numero e “ate, mas nao o
Incluindo”

