
Listas
Prof. Alberto Costa Neto
Programação em Python

Uma Lista é um tipo de
Coleção

• Uma coleção permite colocar vários valores em um única “variável”

• Coleções são práticas porque permitem carregar muitos valores
empacotados de forma conveniente pelo programa

amigos = ['Jose', 'Maria', 'Pedro']
bagagem = ['meia', 'camisa', 'perfume']

O que não é uma “Coleção”?

A maioria de nossas variáveis tem um valor apenas – quando um
novo valor é colocado nela, o antigo é sobrescrito

$ python
>>> x = 2
>>> x = 4
>>> print(x)
4

 Constantes List

• Listas são circundadas por
colchetes e seus elementos são
separados entre si por vírgula

• Um elemento de uma lista pode
ser qualquer objeto de Python –
até mesmo outra lista

• Uma lista pode estar vazia

>>> print([1, 24, 76])
[1, 24, 76]
>>> print(['red', 'yellow', 'blue'])
['red', 'yellow', 'blue']
>>> print(['red', 24, 98.6])
['red', 24, 98.6]
>>> print([1, [5, 6], 7])
[1, [5, 6], 7]
>>> print([])
[]

Um Laço Definido Simples

for i in [5, 4, 3, 2, 1] :
 print(i)
print('Fim!')

5
4
3
2
1
Fim!

Um Laço Definido com Strings

amigos = ['Jose', 'Maria', 'Pedro']
for amigo in amigos :
 print('Feliz Ano Novo:', amigo)
print('Fim!')

Feliz Ano Novo: Jose
Feliz Ano Novo: Maria
Feliz Ano Novo: Pedro

Fim!

Detalhes internos das Listas

Da mesma forma que as strings, nós podemos acessar
qualquer elemento na lista usando seu índice entre colchetes

0
Jose >>> amigos = ['Jose', 'Maria', 'Pedro']

>>> print(amigos[1])
Maria1

Maria
2

Pedro

Listas são Mutáveis
• Strings são “imutáveis” - não

podemos mudar o conteúdo de
uma string, mas podemos criar
uma nova string com as
mudanças desejadas

• Listas são “mutáveis’ - podemos
modificar qualquer elemento de
uma lista. Para isso basta utilizar
seu índice para indicar a posição
e atribuir um novo valor

>>> fruta = 'Banana'
>>> fruta[0] = 'b'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not
support item assignment
>>> f = fruta.lower()
>>> print(f)
banana
>>> idades = [2, 14, 26, 41, 63]
>>> print(idades[2], idades)
26 [2, 14, 26, 41, 63]
>>> idades[2] = idades[2] + 2
>>> print(idades)
[2, 14, 28, 41, 63]

Qual é o Comprimento da Lista?

• A função len() pode receber uma
lista como parâmetro e retorna o
número de elementos na lista.

• Na verdade len() informa o número
de elementos de qualquer conjunto
ou sequência (já vimos que
funciona para string...)

>>> msg = 'Ola Bob'
>>> print(len(msg))
7
>>> x = [1, 2, 'jose', 99]
>>> print(len(x))
4
>>>

Usando a função range

• A função range retorna uma
lista de números que variam
de zero até o antecessor do
parâmetro

• Assim fica fácil construir um
laço for e dispor de índices

>>> print(range(4))
[0, 1, 2, 3]
>>> amigos = ['Jose','Maria','Pedro']
>>> print(len(amigos))
3
>>> print(range(len(amigos)))
[0, 1, 2]
>>>

Laços para todos os gostos...

amigos = ['Jose', 'Maria', 'Pedro']

for amigo in amigos :
 print('Feliz Ano Novo:', amigo)

for i in range(len(amigos)) :
 print(i+1, '- Feliz Ano Novo:', amigos[i])

1 - Feliz Ano Novo: Jose
2 - Feliz Ano Novo: Maria
3 - Feliz Ano Novo: Pedro

Feliz Ano Novo: Jose
Feliz Ano Novo: Maria
Feliz Ano Novo: Pedro

Concatenando listas usando +

• Podemos criar uma nova lista a
partir da junção dos elementos
de 2 listas existentes

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]
>>> print(a)
[1, 2, 3]

Há um certo valor na Lista?

• Python provê dois operadores
(in e not in) que permitem
checar, respectivamente, se um
item está ou não em uma lista

• Eles são operadores lógicos
(retornam True ou False e não
modificam a lista)

>>> nums = [1, 9, 21, 10, 16]
>>> 9 in nums
True
>>> 15 in nums
False
>>> 20 not in nums
True
>>>

Criando uma lista do início
• Podemos criar uma lista

vazia e então adicionar os
elementos usando o método
append

• A lista permanece na ordem
de inserção. Novos
elementos são adicionados
no final da lista

>>> lista = list()
>>> lista.append('livro')
>>> lista.append(99)
>>> print(lista)
['livro', 99]
>>> lista.append('biscoito')
>>> print(lista)
['livro', 99, 'biscoito']

Listas podem ser
particionadas (sliced) usando :

>>> t = [9, 41, 12, 3, 74, 15]
>>> t[1:3]
[41,12]
>>> t[:4]
[9, 41, 12, 3]
>>> t[3:]
[3, 74, 15]
>>> t[:]
[9, 41, 12, 3, 74, 15]

Lembrete: Da mesma forma
que em strings, o segundo
número é “até, mas não o
incluindo”

