Prof. Alberto Costa Neto
Programacao em Python

Conjuntos

* Um objeto conjunto € uma colecao nao ordenada
de objetos distintos com suporte a hash, tendo 0s
seguintes usos:

- Remover duplicatas de uma sequéncia
- tais como
intersecao, uniao, diferenca e diferenca simétrica.

* Nao suportam operacoes de slicing e acesso
posicional (indexacao) a elementos

Conjuntos

* Um Conjunto é tipo de estrutura de dados que representa

um conjunto de valores
* Suportam as len, In, for _in set, max, min, sum
>> x = {1,2,3,4,5,6,5} >>> for iter in
>>> print(x) ... print (iter)

{1I 2/ 3/ 4/ 5/ 6}

>> vy = {1,9,2} 1
>>> print(y) 2
{1, 2, 9} 9
>>> print ((v)) >>>

S

Conjuntos

* Também podem ser gerados através de compreensao de
conjuntos

>>> nums = {1,2,3,4,5,6,7,5,2,4,7,8,9}
>>> print (set (nums))
{1I 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9}

>>> impares = {x for x in nums 1f x%2==1}
>>> print (impares)
{1, 3, 5, 7, 9}

Métodos de conjuntos

add: adiciona o valor no conjunto, se ja nao estiver la
discard: descarta o valor passado, retirando-o do conjunto.
Nao gera erro quando nao consegue.

remove: remove o valor passado do conjunto. Gera erro se
Nao conseguir

pop: retira um valor arbitrario do conjunto

update: atualiza o conjunto com uma sequéncia de valores
clear: limpa o conjunto (remove todos os valores)

copy: cria uma copia do conjunto

Métodos add e remove

>>> nums = {1,2,3,4,5}

>>> print (nums)

{1, 2, 3, 4, 5}

>>> nums.add (6)

>>> nums.add (4) # ja esta no conjunto, logo nada muda
>>> print (nums)

{1, 2, 3, 4, 5, 6}

>>> nums.remove (6)

>>> nums.remove (6) # gera erro pois o 6 nao existe

>>> print (nums)
{1I 2/ 3/ 4/ 5}

>>>
>>>
>>>
>>>
{ 1 ’

>>>

>>>

>>>

Métodos discard e pop

nums = {1,2,3}

nums .discard (3)

nums .discard(3) # ndo gera erro

print (nums)

2}

nums .pop() # remove e retorna um valor arbitrario

nums .pop() # remove e retorna um valor arbitrario

nums .pop() # gera um erro, pois o set estda vazio

Método update

>>> nums = {1}

>>> nums.update((2,3)) # atualizada com tupla

>>> print (nums)

{1, 2, 3}

>>> nums.update([3,4,5]) # atualiza com uma lista
>>> print (nums)

{1, 2, 3, 4, 5}

>>> nums.update({5,6,7}) # atualiza com um conjunto
>>> print (nums)

{1, 2, 3, 4, 5, 6, 7}

Operacoes matematicas
em Sets (métodos)

Um Set possui uma série de métodos que implementam as
operacoes matematicas sobre conjuntos

Uniao - union
Interseccao - intersection
Diferenca - difference
- symmetric_difference
- nhotin/In
- Issubset
Superconjunto - Issuperset

Uniao

* Retorna um novo conjunto com elementos
do conjunto e de todos os outros

>>> A = {1,2,5,6} >>> print (A.union (B) .union (C))

>> B = {1,2,3,4}

>> C = {1,3,5,7} 1,2, 3,4, 5,6, 7}
>>> print (A.union (B))

{1, 2, 3, 4, 5, 6} >>> print(A | B | C)
>>> print (B | C) {1, 2, 3, 4, 5, 6, 7}

{1, 2, 3, 4, 5, 7}

Intersecao

* Retorna um novo conjunto com
elementos comuns do conjunto e
de todos os outros

>> A = {1,2,5,6}

>>> B =1{1,2,3,4} >>> print (B & C)

>>> C = {1,3,5,7} (1. 3)

>>> print(A.intersection (B)) ']

(1. 23 >>> print (A & C)
{1, 5}

>>> print (A & B)

(1 23 >>> print(A & B & C)

{1}

Diferenca

* Retorna um novo conjunto com
elementos no conjunto que nao

estao nos outros. B
>>> A = {1,2,5,6} >>> print(B - A - C)
>>> B = {1,2,3,4) (4}

>> C = {1,3,5,7}

>>> print (A.difference (B))
{5, 6}

>>> print (B - C)

{2, 4}

Subconjunto

* Testa se cada elemento do
conjunto esta contido no outro

>>> A = {1}

>> B = {1,2,3}

>>> C = {1,2,3,4,5}

>>> print (A.issubset (B))
True

>>> print (A < B)

True

>>> print (A < C)
True

>>> print (C < B)
False

>>> print (A < A)
False

>>> print (A <= A)
True

Superconjunto

* Testa se cada elemento do outro
conjunto esta contido no conjunto.

>>> A = {1}

>> B = {1,2,3}

>> C = {1,2,3,4,5}

>>> print (B.issuperset (Ai))
True

>>> print (B > A)

True

>>> print (C > A)
True

>>> print (B > C)
False

>>> print (A > A)
False

>>> print (A >= A)
True

Disjunto

* Retorna True se o conjunto nao tem
elementos em comum com outro.
Conjuntos sao disjuntos se e somente
se a sua intersecao € o conjunto vazio. [

>> A = {1,2,5,6}

>> B = {1,2,3,4}

>> C = {7,8}

>>> print (A.isdisjoint (B))
False

>>> print (C.isdisjoint (A))
True

Conjuntos Congelados
(frozen)

* De forma semelhante a tuplas, frozenset sao conjuntos
imutaveis, ou seja, ap0s serem criados nao podem ser
modificados

>>> nums = frozenset([1,2,3,4,5,6,7,5,2,4,7,8,9])
>>> print (nums)

frozenset ({1, 2, 3, 4, 5, 6, 7, 8, 9})

>>> nums.add (10)

